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Equations for the interpretation of pseudo- (non-space-group) extinctions are given. 

1. Introduction 

Pseudo-extinctions are present if reflections allowed by 
space-group symmetry are found to be extinct in a 
systematic way (examples are shown in Niggli, 1959a; 
Schulz & Schr6der, 1973). Niggli (1959b) proposed for the 
solutions of these pseudo-extinctions the following method: 
the true elementary cell is reduced in such a way that the 
pseudo-extinctions become true space-group extinctions for 
the artificial elementary cell. Afterwards this elementary cell 
is increased stepwise. 

In the following a method which allows all solutions of a 
pseudo-extinctions rule to be found simultaneously and its 
limitations are described. 

2. Interpretation of  pseudo-extinctions 

We assume that a crystal contains a translational vector 
which is not embodied in the translational part of the crystal 
symmetry. This can be expressed by an elementary cell 
containing two atoms of the same kind located at the origin 
of the elementary cell (000) and at (x - r/s, y t/u, z =- 
v/w)', r, s . . . . .  w are integers. This atomic arrangement 
generates extinct layers in reciprocal space, which can be 
described by the plane equation: 

P=-Ah + Bk + CI= D (mod E), (1) 

(hkl) are coordinates in reciprocal space. If reflections are 
included in these layers, they must fulfil the equation: 

1 +exp  2hi h + - k + - I  =0 .  (2) 
u w 

From (2) follows 

r t v 
- h +  - k +  - l = ½ ( m o d l ) .  (3) 
g u W 

Therefore, (1) can be reduced to 

A'h + B'k + C'l = ½ (mod 1). (4) 

The coefficients (A' ,B' ,C')  can be written as 

r' t' v' 
A ' = ~  , B ' -  - -  , C ' -  - - .  

S U w 

The solutions of (4) are given by 
r r 

- -  h = ½ (rood 1) 
S 

t ? 

- -  k = ½ (mod 1) 
U 

V t 

--I  = ½ (mod 1) (5) 
W 

with x' = r'/s; y' = t'/u; z' = v'/w < 1. The coordinates 
(xyz) are embodied in the solutions (x'y 'z ') .  

Example 

We assume that an elementary cell contains two atoms 
occupying the positions (0,0,0) and 5 3 Q,g,0). This arrangement 
causes the following pseudo-extinctions: 

h = 0 ( m o d 6 )  k = 4 ( m o d 8 )  
and 

h = 3 ( m o d 6 )  k = 0 ( m o d 8 ) .  

Layers in reciprocal space containing only these pseudo- 
extinct reflections can be described by 

P - 4 h + 3 k =  12(mod24).  

This equation can be reduced to 

h k 
- + - =  ½(mod 1). 
6 8 

The solutions are given by 

r '  r '  
- - 3 = ½ ( m o d  1), < 1 
6 

and 

t' t' 
- - 4 = ½ ( m o d l ) ,  - - <  1. 
8 8 

It follows that all possible solutions are given by 

x'  el 3 5~. y, [1 3 5 7~. Zt 

3. Application 

For the structure determination of MOO2C12. H20 (Schulz & 
Schr6der, 1973), the solutions of the following pseudo- 
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extinction have been used: reflections with k = 2 (mod 4) are 
extinct. Equation (1) can be written as: 

k = 2 .  

This can be reduced to 

¼k=½(mod 1) 

and 

t' 
- -  2 = ½(mod I). 
4 

It follows from (5) that y '  = ¼ and ~. This means that an atom 
at (x,y ,z)  is accompanied by an atom at (x,Y+¼,z) or 
(x,y+¼,z). 

4. Limitations 

The above-mentioned equations can be used if only one 
translational vector between pairs of  atoms is present. Only 
in simple cases may a limited number of  solutions of (5) be 
helpful for a structure determination. However,  errors in 
space-group determination can be avoided by successful 
interpretations of pseudo-extinctions. 

References 

NIGGLI, A. (1959a). Z. Kristallogr. 111,269-282.  
NIGGLI, A. (1959b). Z. Kristallogr. 111, 283-287. 
SCHULZ, H. & SCHR6DER, F. A. (1973). Aeta Cryst. A29, 

322-333. 

Acta Cryst. (1978). A34, 474-475 

On the probability of measuring the intensity of a reflexion as negative. By A. J. C. WILSON, Department o f  
Physics, University o f  Birmingham, Birmingham B 15 2TT, England 

(Received 12 January 1978; accepted 28 January 1978) 

Infrequently quoted statistical results relating to taxi queues etc. are modified to obtain the probability of obtaining an 
observed number of counts R o = T o - B, when the 'true' numbers of counts are R, T and B for reflexion, total and 
background respectively and 1",, and B o have the expected Poisson distributions. The expression, valid for negative as well 
as positive values of R o, is 

P(Ro) = exp {-(B + T)}(T/B)naZlRo{2(BT)'/21, 

where l,(x) is the hyperbolic Bessel function of the first kind. If the negative values of Ro are included, R,, is an unbiased 
estimator of R. In no case is R~/2 an unbiased estimator of R ~/2, so that Patterson and R 2 methods are preferred to usual 
electron-density and R~ methods in structure determination whenever they are appropriate. 

In the absence of drift and other disturbing influences, the 
number of counts recorded during the counting interval used 
in diffractometers working in the fixed-time mode fluctuates 
in accordance with the Poisson probability distribution. If the 
' true'  number of  counts to be expected in the interval is N, 
the probability that the number actually observed will be N o 
is given by 

p ( N  o) = exp(-N)NN,/No! .  (1) 

The quantities p, N and N O are necessarily non-negative. The 
intensity of a reflexion, say R, is given by the difference 
between the ' true'  number of counts T expected when the 
diffractometer is set to receive the reflexion and the 'true' 
number of counts expected when the diffractometer is set to 
receive the immediate background; 

R = T - B ;  

for simplicity it is assumed that the counting times for 
reflexion and background are the same. The observed values, 
T O and B o, will fluctuate with probabilities given by equations 
like (1), so that the observed value R o will sometimes be 
negative, though the ' true'  value R must be zero or positive. 
What  is the probability p(Ro) of obtaining any particular 
observed difference Ro? The answer is not well known, and is 
to be found in comparatively few text-books. For the sum 

S o = 7",, + B o, 

the result is immediate: the sum of two Poisson-distributed 
variables is itself Poisson-distributed, with parameter  S equal 
to the sum of the parameters T and B of  its components,  but 
obviously the converse is not true for the difference. It is easy 
to write down a formal expression: 

p(R o) = " p(B,)p(T,) ,  (4) 

the summation being over all Bo and T, related by 

Ro = T , , -  B,,. (5) 

Substitution from equation (1) gives 

.: x ,  

p(Ro) = "-- exp{ -(B + 7")/B t~- T",,~R,,/B,,!(B,, + R,,)!. (6) 
It,,=o 

(2) The summation was carried out in a special case by Irwin 
(1937) and in general by Skellam (1946); it results in the 
Bessel function I , ,  related to the ordinary Bessel function J,, 
in the same way as the hyperbolic functions cosh and sinh 
are related to the trigonometric functions cos and sin. The 
required probability distribution for the observed number of 
counts in a reflexion is thus 

P(Ro) = exp { - (B  + T)}(T/B)  n,'/2 Ik, I2(BT)I/2}. (7) 

Extensive tables of I ,  exist (for example, in Abramowitz  & 
(3) Stegun, 1964). As is fairly obvious intuitively, the mean value 


